
Physics 12c: Problem Set 6

Due: Thursday, May 23, 2019

1. Light bulb in a refrigerator

A refrigerator that draws 50 W of power is contained in a room at temperature
300◦K. A 100 W lightbulb is left burning inside the refrigerator. Find the steady-state
temperature inside the refrigerator assuming it operates reversibly and is perfectly
insulated.

2. Photonic heat engine

Consider a heat engine undergoing a Carnot cycle, where the working fluid is a photon
gas rather than a classical ideal gas. In the first stage, the gas expands isothermally
at temperature τh from the initial volume V1 to the final volume V2. In the second
stage, it expands isentropically to volume V3, cooling to temperature τl. In the third
stage it is compressed isothermally at temperature τl to volume V4, and in the fourth
stage it is compressed isentropically back to volume V1, heating to temperature τh.

(a) The energy per unit volume of a photon gas is U/V = Aτ4, where A =
π2/15~3c3. Use the thermodynamic identity

dU = τdσ − pdV (1)

to find the entropy of the gas, expressed in terms of A, τ , and V . Assume that
the entropy is zero at τ = 0.

(b) Use the thermodynamic identity again to express the pressure p in terms of A, τ,
and V .

(c) Calculate the work done W12 and the heat added Q12 during the first stage of
the cycle, expressed in terms of A, τh, V1, and V2. Verify that Q12 −W12 is the
change in the internal energy of the gas.

(d) Express the work W34 done by the gas in the third stage in terms of A, τl, V3,
and V4.

(e) Use the condition σ =constant during the isentropic stages to express V3 and
V4 in terms of τh, τl, V1, and V2.

(f) Find the work W23 done during the second stage and the work W41 done during
the fourth stage.

(g) Express the net work W done during the complete cycle in terms of A, τh, τl, V1,
and V2. Comparing to Q12, check that the engine achieves the ideal Carnot
efficiency.
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3. Speed vs. reversibility

Consider two systems S1,S2 with temperatures τ1, τ2. Between the systems, we place
a barrier with a finite thermal conductivity α > 0, so that the rate of energy flow is

dU1

dt
= α(τ2 − τ1). (2)

Let S1 have constant heat capacity dU1
dτ1

= C.

Suppose that we can set τ2 to any function of time τ2(t). Furthermore, we can do
so without producing entropy anywhere other than the interface between S1 and S2.
For example, we can imagine that S2 is a very large insulated container of gas that
we can expand or compress at will with a piston.

The goal of this problem is to show that entropy production at the interface between
S1 and S2 can be suppressed by changing τ2 very slowly.

(a) Show that the rate of change of the total entropy σtot = σ1 + σ2 due to heat
exchange through the barrier is

dσtot
dt

= α
(τ2 − τ1)2

τ1τ2
. (3)

(b) Define the temperature difference τ1(t)− τ2(t) = δ(t). Show that it satisfies the
differential equation

dδ

dt
= −γδ − τ̇2, (4)

where τ̇2 = ∂τ2
∂t and γ = α

C . Assuming that τ̇2 is zero in the far past and far
future, show that the solution is

δ(t) = −
∫ t

−∞
eγ(t

′−t)τ̇2(t
′)dt′. (5)

(c) Let us compute δ(t) for a slow process. Note that 1/γ is a time scale associated
with heat transfer. For a slow process, this time scale is much shorter than
the time scale of changes in τ2. We can equivalently think of this as the limit
γ →∞.

To simplify (5) in this limit, first write it as

δ(t) = −
∫ ∞
−∞

K(t− t′)τ̇2(t′)dt′, (6)
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where

K(t) ≡ e−γtθ(t). (7)

and θ(x) is defined by

θ(t) =

{
0 if t ≤ 0

1 if t > 0.
(8)

When γ → ∞, the kernel K(t) becomes very sharply-peaked. Approximate it
as a delta function using the methods from the previous problem set. Show that

δ(t) ≈ −τ̇2(t)/γ (γ large). (9)

Discussion: The result δ = −τ̇ /γ is called “adiabatic elimination”. The idea is
that when γ is large, the term −γδ causes the rate of change ∂δ

∂t to be enormous
unless the two terms on the right-hand side of (4) very nearly cancel. If they
initially don’t cancel, then δ will rapidly move to make them cancel. Thus, in
the limit γ → ∞, we can set the sum of the terms to zero −γδ − τ̇ = 0. In
the language of electronics, the term −γδ creates strong “negative feedback.”
Adiabatic elimination is useful for understanding the behavior of op-amps in
circuits.

(d) Consider changing τ2 from an initial value τ0 to a final value τ0(1 +x) such that
τ̇2 is a gaussian with width T :

τ̇2 =
τ0x√
2πT 2

exp

(
− t2

2T 2

)
. (10)

Using the value of δ(t) from problem (3c), and assuming x � 1, compute the
total change in entropy σtot(t = ∞) − σtot(t = −∞). Show that the change
in entropy can be made arbitrarily small by making the change in τ2 happen
arbitrarily slowly, T →∞.
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