
Physics 12c: Problem Set 5

Due: Thursday, May 16, 2019

1. Higher order corrections to heat capacity

Consider a free gas of fermions with density of orbitals D(E) = αE1/2 and Fermi en-
ergy EF . The chemical potential and heat capacity have low-temperature expansions

µ(τ) = EF + µ2τ
2 + µ4τ

4 + . . . ,

CV (τ) = γ1τ + γ3τ
3 + . . . . (1)

In class, we derived

µ2 = − π2

12EF
, γ1 =

π2

3
αE

1/2
F . (2)

Find µ4 and γ3.

2. (More) sharply-peaked functions and the path integral

The Hamiltonian for a particle moving in 1 dimension in a potential V (x) is

Ĥ =
p̂2

2m
+ V (x̂), where p̂|x〉 = −i~ ∂

∂x
|x〉. (3)

We claim that for infinitesimal ε, we have

〈x1|

(
1− εĤ

~
+O(ε2)

)
|x0〉 = Aε exp

(
−1

~

∫ ε

0
dtL(x(t), ẋ(t))

)
, (4)

where Aε =
√

m
2π~ε is a constant,

L(x, ẋ) =
1

2
mẋ2 + V (x) (5)

is the (imaginary time) Lagrangian, and

x(t) = x0 + (x1 − x0)
t

ε
(6)

is a straight-line path from x0 to x1 taking time ε. Above, O(ε2) means quadratic
order and higher in ε.

(a) Prove (4) as follows. Compute the left-hand side in terms of δ(x1 − x0) and
δ′′(x1−x0). Then plug (5) and (6) into the right-hand side. Expand the answer
to linear order in ε and check that it agrees with the left-hand side. Hint: use
the same techniques as in problem (1).
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(b) Show that

〈xN |

(
1− TĤ

~N
+O

(
1

N2

))N
|x0〉

= A T
N

∫ ∞
−∞

A T
N
dx1 . . .

∫ ∞
−∞

A T
N
dxN−1 exp

(
−1

~

∫ T

0
dtL(x(t), ẋ(t))

)
, (7)

where x(t) is a piecewise-linear path between the values

x(0) = x0, x( TN ) = x1, x(2T
N ) = x2, . . . x(T ) = xN . (8)

(c) Show that

Tr

(1− TĤ

~N
+O

(
1

N2

))N
=

∫ ∞
−∞

A T
N
dx0 . . .

∫ ∞
−∞

A T
N
dxN−1 exp

(
−1

~

∫ T

0
dtL(x(t), ẋ(t))

)
, (9)

where x(t) is a piecewise-linear periodic path between the values

x(0) = x0, x( TN ) = x1, x(2T
N ) = x2, . . . x(T ) = x(0). (10)

That’s the end of this problem; now here’s some fun information. Taking the limit
N →∞ of (7), we obtain the path integral

〈xf |e−
TĤ
~ |xi〉 =

∫
x(0)=xi
x(T )=xf

Dx(t) exp

(
−1

~

∫ T

0
dtL(x(t), ẋ(t))

)
. (11)

Here, the integral is over paths from x(0) = xi to x(T ) = xf . One way of defining
the measure

∫
Dx(t) on the space of paths is by approximating the path as piecewise

linear and integrating over the intermediate positions. In other words, (11) is just

a fancy way of writing (7). Note that e−i∆tĤ/~ is the operator that evolves a state

forward by time ∆t, so e−TĤ/~ is the operator that evolves by imaginary time ∆t =
−iT . Thus, the path x(t) should be interpreted as being a path in imaginary time.

Taking the limit N →∞ of (9), we get

Tr(e−
TĤ
~ ) =

∫
x(0)=x(T )

Dx(t) exp

(
−1

~

∫ T

0
dtL(x(t), ẋ(t))

)
, (12)

where here the integral is over periodic paths. Note that the left-hand side is the
partition function at inverse temperature β = 1/τ = T/~. Thus, the partition func-
tion is a path integral over paths that are periodic in imaginary time with periodicity
T = ~β, or ∆t = −i~β.
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3. Heat capacity of graphene

Geim and Novoselov received the 2010 Nobel Prize in Physics for their studies of
graphene, a single layer of carbon atoms bonded into a two-dimensional hexagonal
lattice. Remarkably, electrons in graphene behave like relativistic massless fermions;
for each value of the wavenumber k = (kx, ky), there are two single-particle orbitals,
with energies

E±(k) = ±~v|k|. (13)

The Fermi energy is EF = 0; hence at zero temperature the orbitals with negative
energy are occupied, and the orbitals with positive energy are empty.

Assuming the electrons can be treated as an ideal gas, and that there are two spin
states for each orbital, the internal energy of the electrons has the form

U(τ)− U(0) =
1

3
γAτ3, (14)

where A denotes the area and hence the electron heat capacity is C = γAτ2. Find
γ. Hint: Do not use approximations of f(E, τ, µ) in terms of δ-functions and their
derivatives because the density of states is not differentiable at E = EF . Instead, use
the integral

∫∞
0 dxx2/(ex + 1) = 3ζ(3)/2.

4. Bose condensation in two dimensions

Consider an ideal gas of non-relativistic spin-0 bosons, at temperature τ , in a two-
dimensional box of side length L.

(a) Find the two-dimensional density of orbitals D(E).

(b) Express the chemical potential µ in terms of N0(τ), the number of particles in
the ground orbital. Use the conventions that the energy of the ground orbital
is E0 = 0.

(c) Find Ne(τ), the number of particles in excited orbitals. You may assume that
the box is big enough so that the sum over modes can be replaced by an integral.
Be sure to use the formula found in (4b) for µ, not the N0 → ∞ limit of that
formula. Your answer for Ne will therefore be expressed in terms of N0. Hint:∫
dx(aex − 1)−1 = log(a− e−x).

(d) Find the two-dimensional Einstein condensation temperature τE . This is the
smallest temperature such that for τ > τE , the fraction N0/(N0+Ne) of particles
in the ground orbital vanishes in the limit L → ∞. (The limit is to be taken
with the density (N0 +Ne)/L

2 held fixed.)

3


