
Physics 12c: Problem Set 2

Due: Thursday, April 18, 2019

1. Partition function identities

Consider a system S with partition function ZS(β) =
∑

s e
−βEs , where the sum runs

over states of S, and β = 1/τ is the inverse temperature.

(a) Show that U = 〈E〉 = − ∂
∂β logZS(β).

(b) Show that ∆E2 = 〈(E − 〈E〉)2〉 = ∂2

∂β2 logZS(β).

(c) The heat capacity is C = ∂U
∂τ . How is C related to ∆E2?

(d) Consider N non-interacting copies of S. Compute the partition function and
use the above identities to show that that the fractional fluctuation ∆E/〈E〉 for
the combined system scales like 1/

√
N .

2. Model of a large reservoir

(a) Consider a system S divided into two subsystems S1 and S2 in thermal contact,
sharing total energy E. If S1 has energy E1 and S2 has energy E2 = E − E1,
the total entropy of S is

σtotal = σ1(E1) + σ2(E2), (1)

where σ1 is the entropy of S1 and σ2 is the entropy of S2. Show that if E1 is
chosen to maximize σtotal (“the most probable configuration”) with the total
energy E fixed, then the two subsystems have the same temperature: τ1 = τ2.
(To verify that this configuration is really a maximum rather than a minimum,
check the sign of the second derivative of σtotal with respect to E1, assuming the
heat capacity Ci = dEi/dτi is positive for both subsystems.)

(b) Now suppose S is divided into N subsystems S1,S2, . . . ,SN in thermal contact,
with total entropy

σtotal =
N∑
i=1

σi(Ei), (2)

where σi, Ei are the entropy and energy of Si. Using mathematical induction
and part (2a), show that if the total energy E = E1 + E2 + · · · + EN is fixed,
then the total entropy σtotal is maximized when all N systems have the same
temperature.
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(c) Now consider a large reservoir consisting of N identical subsystems, all in ther-
mal contact with one another and each with the same entropy function σ(E).
It follows from part (2b) that in the most probable configuration all subsystems
have the same temperature and all therefore have the same energy as well; hence
the total entropy is

σtotal(E) = Nσ(E/N), (3)

where E is the total energy.

Suppose that the total energy decreases from E to E−Es. Find the correspond-
ing change ∆σtotal in the total entropy, expanded in a power series to quadratic
order in Es. Express your answer in terms of the reservoir’s temperature τ and
the heat capacity C of an individual subsystem. Argue that it is reasonable to
neglect the term of order E2

s when the number of subsystems is N � 1.

* Optional What is the form of higher-order terms in the power-series expansion
of σtotal(E − Es) in Es? Assuming the function σ(E) has finite derivatives,
argue that in the limit N → ∞ with τ fixed, all the higher-order terms can be
neglected as well.

3. Anisotropic well

The Hamiltonian for a particle of mass m in an anisotropic potential well is

H =
1

2m
(p2x + p2y + p2z) +

m

2
(ω2

1x
2 + ω2

2y
2 + w2

3z
2). (4)

Since H is the sum of three one-dimensional harmonic oscillator Hamiltonians with
circular frequencies ω1, ω2, ω3, the energy eigenvalues are

E(n1, n2, n3) = ~ω1n1 + ~ω2n2 + ~ω3n3 (5)

(ignoring the zero-point energy), where n1, n2, n3 are nonnegative integers.

(a) Find the partition function Z1 for a single particle in the potential well at
temperature τ .

(b) Now suppose that N distinguishable non-interacting particles are in the po-
tential well. Express the partition function ZN in terms of the single-particle
partition function Z1.

(c) Compute the average energy U(τ,N).

(d) Find the heat capacity C =
(
∂U
∂τ

)
N

in the high-temperature limit, τ � ~ω1, ~ω2, ~ω3.
(The subscript N on the partial derivative means that N is held fixed during
differentiation.)
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4. Particle on a circle

Consider a single quantum mechanical particle confined to a circle with length L.
The Hamiltonian is

H =
p2

2m
, (6)

where p is the momentum, which is quantized so that the wavefunction is periodic
around the circle. Let the temperature be τ .

(a) Show that the partition function is

Z =

∞∑
n=−∞

e−yn
2

(7)

for some y (that you should determine).

(b) Compute the partition function in the large-τ limit.

(c) The partition function for the particle on a circle possesses a surprising high/low
temperature “duality”. Specifically, the function (7) satisfies the identity

Z(y) =

√
π

y
Z

(
π2

y

)
. (8)

Use this identity to re-derive your answer to part (4b).

5. Imaginary time

Let us prove the duality (8) from problem (4c). In class, we derived a general ex-
pression for the partition function of a quantum mechanical system:

Z = Tr(e−βH), (9)

where β = 1/τ . The trace of a matrix can be computed using any basis. The key to
deriving (8) is to evaluate the trace using the position basis instead of the momentum
basis (that you used in problem 4). In position space, we have

H = − ~2

2m

∂2

∂x2
. (10)

The trace is

Tr(e−βH) =

∫ L

0
dx〈x|e−βH |x〉 =

∫ L

0
dxf(x, x, β), (11)

where we have defined

f(x, x′, β) ≡ 〈x′|e−βH |x〉. (12)

Here, we used the fact that |x〉 for x ∈ [0, L) is a complete orthonormal basis of states

for the particle on a circle, so that
∫ L
0 dx|x〉〈x| is a resolution of the identity.
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(a) Show that f(x, x′, β) satisfies the differential equation

− ∂

∂β
f(x, x′, β) = − ~2

2m

∂2

∂x2
f(x, x′, β). (13)

(b) What is the initial condition for f(x, x′, β) at β = 0?

(c) Show that if ψ(x, t) is any solution to the Schrodinger equation

i
∂

∂t
ψ(x, t) = − ~2

2m

∂2

∂x2
ψ(x, t), (14)

then f(x, x′, β) = ψ(x,−iβ) is a solution to (13).

Thus (13) is called the “imaginary-time” Schrodinger equation. As we will
discuss later in the course, it is also an example of a diffusion equation.

(d) Show that a solution to (13) is

A√
β
e
− m

2~2
(x−x′)2

β , (15)

where A is a constant. You might recognize this as the wavefunction for a free
particle that starts in a position eigenstate, and then undergoes Schrodinger
evolution, after replacing t = −iβ.

(e) The above solution is not periodic under x→ x+L. Obtain a periodic solution
by summing over shifts

f(x, x′, β) =
A√
β

∞∑
n=−∞

e
− m

2~2
(x−x′−nL)2

β . (16)

Verify that the above solution is periodic under x→ x+L. Compute the value
of A such that f(x, x′, β) has the correct initial conditions as β → 0. Recover
(8) by evaluating (11).

Note: This computation to derive formula (8) is a special case of Poisson resumma-
tion. It also has a beautiful interpretation in terms of the path integral formulation
of quantum mechanics, which you may encounter later in your physics studies. The
function Z(y) is famous in the mathematics literature. It is a type of “θ-function”
and is perhaps the simplest example of a modular form.
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