
Physics 12c: Problem Set 1

Due: Thursday, April 11, 2019

1. Sharply-peaked functions. Stirling’s approximation is

n! = (2πn)1/2nne−n
(

1 +
1

12n
+O(1/n2)

)
(1)

Derive it as follows

(a) Show that n! = Γ(n+ 1), where

Γ(n) ≡
∫ ∞
0

dx

x
xne−x. (2)

First show that Γ(1) = 1 = 0!. Using integration by parts, show that Γ(n)
satisfies the identity

Γ(n+ 1) = nΓ(n). (3)

Since this identity is also satisfied by n!, the claim follows.

(b) When n is large, the integrand for Γ(n + 1) is sharply peaked as a function of
x, and gets most of its contribution from the region near the peak. Write the
integrand as

xne−x = exp (n log x− x) . (4)

Let x0 be the point where the integrand achieves its maximum. Expand the
quantity in the exponential around x0,

n log x− x = a0 − a2y2 + a3y
3 + a4y

4 + a5y
5 + a6y

6 + . . . , (5)

where y = x− x0 and a2 is positive. We have

Γ(n+ 1) =

∫ ∞
−x0

dy exp
(
a0 − a2y2 + a3y

3 + a4y
4 + a5y

5 + a6y
6 . . .

)
. (6)

(c) Argue that in the large-n limit, the integrand gets most of its contribution from
the region where a2y

2 is order 1. Show that the aky
k for k > 2 are small in this

region. Use this to justify expanding the exponential

Γ(n+ 1) =

∫ ∞
−x0

dyea0−a2y
2

(
1 + a3y

3 + a4y
4 + a5y

5 +

(
a6 +

a23
2

)
y6 + . . .

)
.

(7)
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* Optional The above expansion is good in the region where the gaussian e−a2y
2

is peaked. However, it breaks down far away from that region, when y is large.
This is not a problem as long as Ik =

∫∞
−∞ dy e

−a2y2aky
k remains small (the ea0

factor just multiplies the whole answer so it is unimportant for this analysis).
However, argue that Ik can become large for sufficiently large k. Thus, we
must truncate the series in the exponent (6) before expanding. Have a look
at https://en.wikipedia.org/wiki/Stirling’s approximation for a plot of
the relative error in the truncated Stirling series as a function of k. Note that
for any fixed n, the error is initially decreasing as a function of k, and then rises
again.

The expansion (7) is an example of perturbation theory for Gaussian integrals.
It is at the core of the Feynman diagram expansion for quantum field theory. It
always produces series that must be truncated and are only correct up to “non-
perturbative” corrections of the form e−n. Such series are called “asymptotic
series.”

(d) Ingore the “. . . ” and focus on the terms written in (7). Argue that when n is
large, we can replace

∫∞
−x0
→
∫∞
−∞ up to small errors. Perform the Gaussian

integrals to obtain Stirling’s approximation.

2. Central limit theorem. Let p(s) be a probability distribution, and let {s1, . . . , sN}
be random variables drawn independently from that distribution. Let S =

∑N
i=1 si.

Theorem 0.1 (Central limit theorem). No matter what p(s) is, the probability dis-
tribution P (S) for S approaches a Gaussian as N →∞

P (S)→ 1√
2πNσ2

exp

(
−(S −N〈s〉)2

2Nσ2

)
, as N →∞ (8)

where σ2 = 〈s2〉 − 〈s〉2. Here, 〈f〉 denotes expectation value

〈f〉 =

∫
ds p(s)f(s). (9)

In class, we studied a spin system where si = ±1. This corresponds to a Dirac-delta-
function supported probability distribution p(s):

p(s) =
1

2
(δ(s− 1) + δ(s+ 1)). (10)

We showed in this case that the distribution of the total spin excess S =
∑N

i=1 si
becomes a Gaussian with width

√
N in the large-N limit. The central limit theorem

shows that this is true even for general p(s).

(a) Show that 〈(s− 〈s〉)2〉 = 〈s2〉 − 〈s〉2 = σ2.
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(b) Define Sn =
∑n

i=1 si, so that S = SN . Show the recursion relation

〈Sn〉 = 〈Sn−1〉+ 〈s〉 (11)

Conclude that 〈S〉 = N〈s〉, which is consistent with (8).

(c) Using the same method, compute 〈S2〉 in terms of 〈s〉, 〈s2〉 and N . Write 〈S2〉−
〈S〉2 in terms of σ2. This is a generalization of our result about random walks
from class.

(d) Show

〈eitS〉 = 〈eits〉N . (12)

(e) Expand (12) in a power series in t and recover your expressions from part (2c)
in a different way. What are 〈S3〉 and 〈S4〉?

(f) Show that

P (S′) = 〈δ(S′ − S)〉, (13)

where δ(x) is the Dirac delta-function. (Hint: integrate both sides against a
function of S′.) Show that P (S′) is the inverse Fourier transform of (12):

P (S′) =

∫
dt

2π
e−itS

′〈eits〉N (14)

(g) Let us write

〈eits〉 = ea0+a1t−a2t2+.... (15)

Determine a0, a1, a2 in terms of 〈s〉, 〈s2〉. In the large-N limit, argue that (14)
can be approximated by a Gaussian integral (i.e. one can ignore the “. . . ” in
(15).). Perform the Gaussian integral to recover (8).

Hint: Note that 〈eits〉 is an average of phases. Thus, it has magnitude less than
1 unless all the phases eits are precisely aligned. You may assume that p(s) is
sufficiently generic so that the phases only align when t = 0. (The phases could
align at other values of t if p(s) has delta-function support at integer multiples of
some fixed value t0, but let us assume this is not the case.) Thus, as a function
of t, the magnitude |〈eits〉| looks like this:
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What happens when you raise this function to theN -th power? Use your method
from problem (1c) to complete the argument that the “. . . ” can be dropped.

* Optional Using the methods of problem 1, compute the first subleading cor-
rection to P (S) in the large-N limit in terms of expectation values 〈sk〉.

3. Shannon entropy. Suppose that we receive a message of length N consisting of a
string of symbols a and b, for example

abbabababaabbbbbabababababbabb... (16)

Suppose that a occurs with probability p and b occurs with probability 1− p.

(a) When N is large, most messages will contain pN a’s and (1 − p)N b’s. Show
that the number of such messages is approximately

2NS , (17)

where

S = −p log2 p− (1− p) log2(1− p). (18)

S is called the Shannon entropy per letter. It is roughly the number of bits
of information per letter.

(b) For what value of p is the number of bits per letter smallest? For what value of
p is it largest?

(c) Suppose we have an alphabet with k letters a1, . . . , ak, and the probability to
observe ai is pi. Show that when N is large, the number of possible messages is
approximately 2NS , where

S = −
k∑

i=1

pi log2 pi. (19)
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